[НАЗАД]

   

ИСПЫТАНИЕ НА МАСТЕРСТВО.

 ИЛЛЮЗИИ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ЛЕТЧИКА В ПОЛЕТЕ И ИХ ВЛИЯНИЕ НА РАБОТОСПОСОБНОСТЬ

Окончание. Начало в № 3, 2003.

 Иллюзии приборного полета при ведении пилотом пространственной ориентировки по авиационному горизонту

 Выше было сказано, что пространственная ориентировка летчика в полете является в значительной степени метеозависимой или метеочувствительной функцией. Наземные визуальные ориентиры внекабинного пространства являются для пилота наглядными, первоприоритетными, наиважнейшими сигналами оценки своего пространственного положения. Инструментальные сигналы полета, адресуемые когнитивной сфере (по И.П.Павлову - второсигнальной системе коры больших полушарий) пилота пилотажно-навигационными приборами и дисплеями, и неспособные стать полноценной заменой воспринимаемых визуально первосигнальных стимулов при определении пространственного положения самолета, являются искусственной, навязанной условиями погоды формой отображения воздушной обстановки, когда условия пониженной видимости затрудняют или исключают его прямой визуальный контакт с землей, нарушают взаимодействие с управляемым самолетом и окружающей средой.

 Авиационный горизонт является инструментальным аналогом, искусственным заменителем линии естественного горизонта и используется пилотом при переходе из режима визуального пилотирования в режим приборного полета. По конструктивному решению шкал отсчета углов крена и тангажа  различают 2 основных типа названного индикатора: прямой, с неподвижным индексом самолета, отображаемого в плоскости поперечного сечения (вид с хвоста) на фоне подвижной сферической фигуры, в которой небосвод кодирован цветом светлых тонов, земля – цветом темных тонов, и обратный, в котором линия горизонта неподвижно фиксирована, а индекс самолета вращается по оси крена. Прямая индикация символически воспроизводит картину изменений линии естественного горизонта, которую пилот может наблюдать в визуальном полете в процессе оценки пространственного положения своего самолета по наземным опорным ориентирам рельефа местности. Обратная индикация в большей степени интуитивно воспроизводит летчику в кабине картину эволюций управляемого по оси крена самолета на фоне неподвижной линии естественного горизонта. Концептуальное решение обратной индикации пространственного положения самолета априорно отождествляет линию естественного горизонта с положением линии водораздела между прозрачным фонарем (лобовым остеклением) и нижней непрозрачной частью (приборной доски и бортов) кабины самолета, а вертикаль кабины – с нейтральным положением ручки (штурвала) управления летательного аппарата. Разработчики авиационного приборостроения стран Запада традиционно тяготеют к концепции прямой индикации угловых координат пространственного положения самолета, тогда как российские приборостроители при оборудовании самолетов военной авиации  отдают предпочтение обратной, а точнее – смешанной или раздвоенной индикации авиагоризонта: с фиксированной линией горизонта – для отсчета в точках пересечения с цифровыми индикантами неподвижной шкалы углов крена левого или правого «крылышек» вращающегося индекса самолета, и с подвижным, расщепленным от фиксированной линии авиагоризонта центральным фрагментом, перемещающимся вместе с оцифрованными рисками шкалы тангажа барабана строго вверх или вниз относительно жестко фиксированной оси вращения индекса индекса самолета по крену – для отсчета углов тангажа. Изломанный в точках выпуска шасси поперечный профиль вращающегося по оси крена индекса самолета с отображением «вид сзади» наглядно передает летчику эволюции самолета по крену, включая полет в перевернутом положении.  

Миниатюризация систем отображения полетной информации, которая получила широкое развитие и повсеместное признание в создании и внедрении на борт самолетов коллиматорных  авиационных индикаторов из полупрозрачных материалов, стимулировала к жизни в авиационной психологии, особенно в последние годы, ожесточенные споры о преимуществах прямой и обратной индикации пространственного положения самолета. Сторонники каждой из концепций отстаивают преимущества одной и отрицают право на существование другой, доходя до утверждений о невозможности использования каждой из них в решении задач пространственной ориентировки летчика в полете и требований отстранять от полетов авиаспециалистов, склонных отдавать бескомпромиссное предпочтение и поддержку каждой из названных концепций.

 Противоречивая оценка преимуществ и недостатков прямой и обратной индикации угловых координат пространственного положения самолета, высказываемая разными летчиками-испытателями, профессиональными пилотами военной и гражданской авиации, авиационными психологами, наводит на мысль о том, что пространственная ориентировка летчика представляет собой не простое ощущение своего положения и движения в трехмерной воздушной среде, а сложный, непрерывный, динамичный и многомерный процесс, в котором четко прорисовываются, по крайней мере, два составляющих подпространства: одно - внутри кабины и другое - за ее пределами (линия естественного горизонта). Когда условия пониженной видимости исключают визуальный контакт летчика с землей, его опорными ориентирами горизонтального положения становится линия водораздела между остеклением (верх) и непрозрачными элементами конструкции кабины (приборная доска, бортовые щитки, пол - низ) и дополняющая их вертикаль нейтрального положения ручки управления. Этот вывод подтверждается тем, в приборном полете прекращается поисково-исследовательская деятельность пилота по определению местоположения линии естественного горизонта активными движениями шейной мускулатуры и голова летчика из-за выключения шейного оптико-кинетического рефлекса перестает отклоняться по осям крена и тангажа, устанавливаясь в нейтральное положение по зрительной вертикали кабины. Именно на эти ориентиры и переключается летчик при отсчете пространственного положения пилотируемого самолета по углу крена. Данный факт находит многократное подтверждение в материалах расследования летных происшествий зарубежных исследователей, описавших немало случаев, когда оказавшись в сложном или непонятном пространственном положении в системе прямой индикации, пилот начинает «гонять» ручкой (штурвалом) подвижную линию авиагоризонта и выводит самолет на режимы полной потери управляемости. Этот же вывод подтверждается и в высказываниях отечественных испытателей авиационной техники, заметивших, что пилотирование по авиагоризонту с обратной индикацией пространственного положения самолета неизбежно сопровождается феноменом «двойной ошибки» по углу крена, когда индицируемый индексом самолета на авиагоризонте угол правого или левого крена, скажем в 25°, соответствует фактическому положению крена самолета относительно земной поверхности в 50°, что летчик обнаруживает мгновенно при переносе взора с приборной доски на наземные ориентиры. Эта ошибка заложена в самой интуитивной конструкции авиагоризонта с обратной индикацией крена, поскольку неподвижная шкала крена, как и вся приборная доска, отклоняются при вводе самолета в крен, и подвижный индекс самолета, дублируя положение гироскопического волчка, неизменно индицирует заниженные показания угла крена по прибору.  Факт отсчета летчиками углов крена в точках пересечения левого или правого «крылышек»  самолетного индекса на круговой шкале авиагоризонта с обратной индикацией был отслежен в моделируемом полете при использовании киносъемки движений глаз летчика с помощью взглядоотметчика японской фирмы NAC.

 Таким образом, включение механизма внутрикабинной фиксации периферического поля зрения при ухудшении видимости вынуждает летчика вести отсчет пространственного положения самолета, сопоставляя положение всех подвижных индексов и стрелочных элементов дисплеев с положением визуальной горизонтали и визуальной вертикали кабины, что подтверждается, как указывалось выше, стабильной ориентацией его головы и туловища. В этой системе отсчета летчику удобнее работать с обратной индикацией пространственного положения. И, наоборот, переключение зрительного внимания летчика на определение местоположения линии естественного горизонта в визуальном полете,  когда он выравнивает положение головы и глаз с линией естественного горизонта в пределах доступной ему амплитуды отклонений головы ±15°,  облегчает ему оценку пространственного положения пилотируемого самолета по авиагоризонту с прямой индикацией, поскольку она совпадает с положением и движениями линии естественного горизонта. Сказанное выше дает основание предположить и заподозрить, что при пилотировании самолета в сложных метеоусловиях по коллиматорному авиационному индикатору с его миниатюрными и подвижными светящимися индикантами, сфокусированными на бесконечность, летчик также может вести отсчет пространственного положения самолета по опорным визуальным ориентирам рамы или фонаря кабины, что способно завести его в трудную ситуацию непонятного пространственного положения.

 Будучи интуитивными по своему первоначальному замыслу, обе системы индикации пространственного положения самолета по авиагоризонту  как с прямым, так и с обратным отображением линии естественного горизонта в полете, не в состоянии дать летчику надежное, убедительное отображение пространственного положения самолета в сложных метеорологических условиях, когда необходимо вести непрерывную пространственную ориентировку, особенно при пилотировании на больших углах атаки. Можно предположить лишь, что интуитивное представление пространственного положения самолета по авиагоризонту с прямой индикацией наклона линии естественного горизонта в большей степени соответствует ситуации выхода самолета из приборного полета в режим визуального, тогда как интуитивное отображение пространственного положения самолета по авиагоризонту с обратной индикацией соответствует ситуации перехода самолета из визуального полета в режим пилотирования по приборам. Работы американских исследователей (летчик Уилльям Эрколайн и авиационный психолог Фред Превик, 1999), проводивших сопоставительную оценку эффективности обеих систем индикации по выходу пилота из непонятного пространственного положения, дают основания для подобных предположений. Экспериментаторы установили, что авиагоризонт с обратной индикацией углов крена позволяет летчику уже первым движением ручки управления (благодаря  совместимости ее отклонений по боковому каналу с ожидаемыми летчиком изменениями углового положения по крену) определить истинное текущее положение пилотируемого самолета, и в этом кроется его неоспоримое преимущество. Исследователи, ссылаясь на выводы своих предшественников, показали, что выход из этого противоречивого положения может быть найден в реализации принципа частотного разделения прямой и обратной систем индикации линии искусственного горизонта. Сказанное означает, что при частых и быстрых вмешательствах летчика в управление самолетом, интеллектуальная автоматика включает авиагоризонт в режим обратной индикации, и, наоборот, при плавных, редких вмешательствах летчика в систему управления, автоматика переводит авиагоризонт в режим прямой индикации. 

  Однако несовершенство двухмерного отображения пространственного положения самолета на авиагоризонте с прямой и обратной индикацией углов крена вынуждает летчика обращаться к наземным ориентирам для определения истинного положения своего самолета, например, по удалению от цели или для сверки навигационных ориентиров пролетаемой местности. Сказанное означает, что летчик переходит на другую систему отсчета пространственных координат пилотируемого самолета, прежде всего, по линии естественного горизонта.

Следует заметить, что восприятие изменения пространственного положения тела и управляемого самолета в значительной мере может зависеть и от высоты полета. Приближение самолета к земле и наземным ориентирам превращает ее в мощный первосигнальный фон, на котором самолет воспринимается как отдельная фигура. При фиксации взора на наземных ориентирах местности, с включением механизмов глубинного глазомера, он будет ощущать эволюции самолета по крену как свое собственное и своего самолета перемещение в пространстве. При фиксации же взора на опорных  ориентирах внутри кабины периферическое поле зрения будет воспринимать эволюции самолета по углу  крена как вращение линии естественного горизонта и наземных ориентиров. Из сказанного можно заключить, что процесс пространственной ориентировки летчика в полете реализуется через последовательное чередование визуальных механизмов когнитивного опроса центральным полем зрения пилотажно-навигационных приборов с фиксацией периферическим горизонтали по водоразделу между прозрачными и непрозрачными элементами рабочей кабины и визуальных механизмов дальнего глубинного зрения с фиксацией точек отсчета пространственного положения самолета на неподвижной линии естественного горизонта. Такое переключение и чередование двух систем отсчета пространственного  положения самолета и составляет основное содержание пространственной ориентировки летчика, ее существо и стержень. Представленные соображения подкрепляются исследованиями пространственной ориентировки космонавтов в длительных полетах, где доминирующую роль играет деятельность зрительного анализатора. Хорошо известна роль опорных ориентиров естественного горизонта в происхождении зрительной иллюзии Луны, впервые описанной российским физиком-оптиком С.И.Вавиловым: вблизи линии естественного горизонта размеры небесного спутника Земли воспринимаются во много раз превышащими его истинные константные размеры по сравнению с тем, когда он находится в безориентирном пространстве в зените.

 Таким образом, авиаприборостроителям, авиационным психологам и врачам предстоит провести большой объем научно-исследовательских работ по определению оптимальных режимов индикации пространственного положения самолета, выбору наилучших комбинаций приборной и визуальной оценки угловых пространственных координат летательного аппарата, смягчающих или исключающих расстройство пространственной ориентировки летчика в полете.

 Вестибулярные иллюзии как причина НПО

Вестибулярная система состоит из двух больших комплектов чувствительных органов или датчиков пространственного положения тела человека: шести полукружных каналов (по одной паре в каждой из трех взаимноперпендикулярных плоскостей движения слева и справа) и четырех отолитовых органов (одной маточки и одного мешочка с каждой стороны). Полукружные каналы играют роль датчиков угловых ускорений при движениях головы человека. Они стимулируются запаздывающим перемещением эндолимфатической жидкости, движение которой приводит к отклонению волосяных клеток, прикрепленных к желеобразному образованию, называемому купулой. Отолитовы органы благодаря относительно плотным кристаллам углекислого кальция на своих мембранах реагируют на изменения линейных ускорений или движений головы относительно гравитационной вертикали. Вестибулярная система имеет множество проекций и тесно связана с периферическим полем зрения в корковых представительствах центральной нервной системы. Она по существу является дополнением и продолжением периферического зрения человека, обеспечивающего пространственную ориентировку его тела и позы относительно плоскости земной поверхности и поддерживает зрение, перцептивно-двигательную активность за счет гравитоинерциальной стимуляции своих рецепторов.

Вестибулярная система является идеальным органом для обеспечения координации движения человека по земле, например, при ходьбе и поворотах головы, которые выполняются в частотном диапазоне выше 1 Гц. Но, в отличие от периферического зрения, она не приспособлена к восприятию продолжительных вращений головы или длительно действующих линейных ускорений. Например, при угловом движении длительностью в 1 сек полукружные каналы лабиринта эффективно интегрируют сигнал углового ускорения и достоверно информируют высшие нервные центры об угловой скорости движения головы. Однако, поскольку инерциальное запаздывание эндолимфатической жидкости затухает через 5 – 10 секунд от момента ее первоначального возмущения, лабиринтные каналы могут просигнализировать поворот головы в противоположную сторону при замедлении константной скорости углового вращения. Аналогично полукружным каналам отолитовы рецепторы правильно информируют высшие нервные центры человека о скорости движения его головы в пространстве, если сигнал линейного ускорения длится меньше 1 – 2 секунд, тогда как смещение отолитовой мембраны в течение более продолжительного интервала времени ощущается человеком как отклонение головы от гравитационной вертикали. Таким образом, чрезмерная инерционность чувствительных элементов вестибулярного органа летчика при продолжительных воздействиях угловых и линейных ускорений является основным источником вестибулярных иллюзий НПО в полете.  

Формы и виды вестибулярных иллюзий НПО  

Гиллингем и Превик различают две разновидности вестибулярных иллюзий: вызываемых угловыми ускорениями и линейными ускорениями. Следует заметить, однако, что во многих случаях вестибулярные иллюзии от воздействия угловых и линейных ускорений часто сочетаются с визуальными иллюзиями НПО.  

Одной из самых грозных иллюзий, провоцируемых воздействием угловых ускорений, является так называемая «соматогиральная» иллюзия необратимого или «траурного штопора». В основе этой иллюзии лежит неспособность полукружных каналов адекватно информировать высшие нервные центры пространственного анализатора пилота при выполнении продолжительного разворота. Например, для выхода из продолжительного левого плоского  штопора пилот может попытаться использовать правую педаль и даже в том случае, когда этот маневр удался, прекращение вращения самолета моментально вызывает у  него ощущение перехода самолета в правый штопор (иллюзия обратного крена), поскольку горизонтальные полукружные каналы ощущают торможение в правую сторону. Другим примером вестибулярных иллюзий от угловых ускорений являются Кориолисова или «перекрестная» иллюзия пространственного положения, при которой движение головы в процессе непрерывного разворота приводит к остановке движения лимфы в канале, который вышел из плоскости движения и вызывает иллюзию движения в плоскости, перпендикулярной плоскости «отключившегося» канала (например, наклон головы по оси тангажа под углом в 90° при вращении человека в горизонтальной  плоскости рыскания, может спровоцировать ощущения крена, поскольку горизонтальные каналы, оказавшиеся в плоскости крена, испытывают стимуляцию от торможения эндолимфы, как только они выходят из плоскости вращения по оси рыскания). Иллюзии НПО от воздействия угловых ускорений весьма распространены у пилотов авиации общего назначения, но они считаются менее опасными у пилотов высокоманевренных самолетов, у которых угловые скорости разворота ниже аналогичных показателей самолетов малой авиации.  

Наиболее характерные иллюзии НПО от воздействия линейных ускорений полета вызываются: 1. Отклонением вектора результирующей гравитоинерциальной силы от положения истинной гравитационной вертикали и 2. Изменением величины вектора гравитоинерциальной силы. Эти изменения могут быть спровоцированы воздействием продолжительных линейных ускорений, например, при взлете или при вращении пилотов на центрифуге с внутренней стороны разворота или при выходе самолета из режима горизонтального полета. Одной из самых опасных иллюзий НПО от воздействия линейных ускорений является «соматогравическая» иллюзия, которая ощущается пилотом в процессе взлета и набора высоты как полет на чрезмерно высоких углах тангажа и атаки, а в процессе снижения, например, при заходе на посадку как полет в перевернутом положении. Если в первом случае при наборе высоты пилот попытается уменьшить угол тангажа, этот маневр штурвалом приведет к возникновению центробежной силы, направленной через днище кабины, и может спровоцировать у него ощущение перевернутого полета. Другой опасной иллюзией является уже упоминавшаяся выше «траурная спираль», провоцируемая действием результирующей гравитоинерциальной силы, которая существенно отклонена от гравитационной вертикали. Эта иллюзия ощущается пилотом как горизонтальный режим полета при выполнении продолжительного маневра разворота. Она обусловлена двумя основными факторами: 1. Неспособностью вестибулярного органа ощущать эволюцию продолжительного координированного разворота в течение нескольких секунд и 2. Наложением на действующую силу тяжести центробежной гравитоинерциальной силы с внутренней стороны разворота, что приводит к возникновению результирующего гравитоинерциального вектора, проходящего через фонарь кабины самолета. При выводе самолета из разворота в режим горизонтального полета у летчика возникает ощущение обратного крена (крена противоположного направления).  Если летчик доверится своим телесным ощущениям, он непроизвольно вернет машину в положение первоначального крена. Наконец движения головы летчика в полете при воздействии факторов макрогравитационного поля могут вызвать иллюзию движения самолета по оси тангажа или крена, поскольку на фоне интенсивных пилотажных перегрузок при том же самом фактическом угле наклона головы происходит более выраженное растяжение рецепторов отолитовой мембраны.

Иллюзия избыточной пилотажной перегрузки (G-excess) считается особенно опасной, когда пилот смотрит вверх с внутренней стороны выполняемого разворота, поскольку чрезмерное перерастяжение отолитовой мембраны может быть истолковано как выход самолета из эволюции разворота в режим горизонтального полета. В результате этого летчик, чтобы сохранить ощущение координированного разворота, может непреднамеренно вывести самолет на еще большие углы крена. К этому следует добавить, что воздействие интенсивных пилотажных перегрузок высокоманевренного полета провоцирует снижение работоспособности летчика за счет ухудшения кровоснабжения мозга, сетчатки глаз и ограничения объемов движений всей мышечно-двигательной сферы летчика, включая такие большие инерциальные массы, как голова и конечности летчика.  Динамические нарушения мозгового и сетчаточного кровообращения, возникающие при перегрузках, могут спровоцировать сужение периферического поля зрения, изменения цветовосприятия в центральном поле зрения, тогда как вестибулярные нарушения проявляются в возникновении патологических глазодвигательных рефлексов, например, пульсирующего нистагма и уже упомянутой выше иллюзии НПО из-за избыточной пилотажной перегрузки. Однако визуальные и вестибулярные эффекты воздействия пилотажных перегрузок остаются неизученными. Пока можно лишь утверждать, что они представляют основную угрозу для летчиков высокоманевренной военной и спортивной авиации и в меньшей степени – для пилотов гражданской авиации и авиации общего назначения.

 Хотя надежные визуальные ориентиры пространственного положения самолета, наблюдаемые периферическим полем зрения пилота, обычно снимают иллюзорные ощущения, вызванные вестибулярными и другими неинструментальными стимуляциями, этот механизм защиты не может компенсировать полностью ухудшение условий видимости на борту самолета. В этих условиях у пилотов обычно возникают комбинированные глазовестибулярные расстройства пространственной ориентировки, именуемые окулогиральными иллюзиями при воздействии угловых ускорений и окулогравическими иллюзиями– при воздействии линейных ускорений, при которых наступает суммация визуальных и вестибулярных обманов чувств.

 Выводы и перспективы решения проблемы НПО

 Сенсорные расстройства пилотов, провоцируемые воздействием экстремальных факторов полета и неблагоприятных метеоусловий, приводят к значительному снижению их работоспособности, безопасности и эффективности пилотирования. Наилучшим решением этой проблемы и щитом от этих угроз являются эффективные пилотажно-навигационные дисплеи, по которым высокопрофессиональные пилоты способны бдительно отслеживать сложную воздушную обстановку полета. Примером таких перспективных систем являются бортовая база данных топографического рельефа пролетаемой местности (цифровая геоинформационная система), которая привязана к системе автоматического зависимого наблюдения, спутниковой навигации и интеллектуальной автоматике. При попадании пилотируемого самолета в сложное пространственное положение интеллектуальный автопилот выводит летательный аппарат в безопасный режим горизонтального полета и выдерживает его до полного восстановления нормального функционального состояния и работоспособности пилота, обеспечивая ему в кабине полную визуализацию воздушной обстановки и наземных ориентиров в самых неблагоприятных метеоусловиях. Указанная система уже начала внедряться в истребительной авиации ВВС Швеции и можно ожидать, что позднее станет достоянием и гражданской авиации. Пока уязвимым местом системы остается ее неспособность заблаговременно опознавать и уводить самолет от столкновения с высоковольтными линиями электропередач (Уилльям Олбери, 2003). Естественно, что при проектировании авиационных приборов и систем управления конструкторы должны подходить к решению этого вопроса с учетом самых худших сценариев нестандартной ситуации полета, а не с точки зрения идеально подготовленного к полету пилота. Сказанное относится к дисплеям, переключателям, и другим элементам непосредственного взаимодействия пилота с самолетом. При этом разработчики и специалисты авиационного приборостроения должны помнить о том, что при нарушении пространственной ориентировки с неизбежными проявлениями визуально-вестибулярного конфликта, пилот может пострадать от дезорганизации своей интеллектуальной деятельности с истощением психических ресурсов внимания, расстройствами устного счета времени, произвольной регуляции управляющих движений. Если в условиях лабораторного эксперимента пилоту для выхода из сложного пространственного положения может потребоваться 1 секунда, в реальном полете с пилотированием по коллиматорному индикатору или пилотажно-навигационным приборам в кабине самолете аналогичная задача потребует как минимум от 5 до 10 секунд летного времени. В таких ситуациях с управлением могут и не справиться даже переобученные пилоты-супермены, навыки которых могут деградировать до уровня малоопытного новичка-курсанта. Поэтому, основная задача специалистов современного авиаприборостроения состоит в том, чтобы представить пилоту на дисплее в наиболее наглядном и интуитивном виде всю необходимую для эффективного и безопасного выполнения полетного задания информацию, совместимую с естественными механизмами ее переработки в мозгу летчика. Необходимо расширить применение на борту самолетов систем невизуальной (например, тактильной и звуковой) сенсорной информации, а также двигательной систем, которые в наименьшей степени подвержены неблагоприятным эффектам и последствиям воздействия гипергравитационного поля и визуально-вестибулярного конфликта (например, пальцы рук). Именно создание оптимизированных систем индикации и управления полетом позволит изжить тяжелые последствия НПО и связанных с ними расстройств сенсорно-перцептивной сферы летчиков в полете.

 

Игорь Малинин, к.м.н.

 



Hosted by uCoz